to discover what exactly it does

Breakpoint 2012
Melbourne

Outline

High-level overview of the ME
Low-level details

ME security and potential attacks
Results
Future work

ME: High-level overview

® Management Engine (or Manageability Engine) is a
dedicated microcontroller on recent Intel platforms

® |n first versions it was included in the network card, later
moved into the chipset

® Shares flash with the BIOS but is completely independent
from the main CPU

® Can be active even when the system is hibernating or
turned off (but connected to mains)

® Has a dedicated connection to the network interface; can
iIntercept or send any data without main CPU's knowledge

ME: High-level overview

="
Lo Micro-Controller
Graphics & Memory T (Located in Graphics and Memory Controller Hub Firmware)
— » *
CPU Controller Hub .- - Intek® Active Management Technology Applications
{Asset Management. Third-Party Data Store, Remote Management, eic.)
Softwens Agents Micro-Controller DDR2
N Admin Cora Management
S Services Services Services Network
Operating I . (Configuration {Pawer Manager, (Event/Alerting Services
System . Provisionin PL'E.:L Mon-Volatile Manager, circuit- (HTTP, TCPIP,
/O Controller Hub | LAN Controller Management,olc.) | | Memory Menager, | | bresker conirl, TLS, ete)
.) ’ ete,) etc,)
— N Wired Wireless
1 - 5
S Outof- Out-of- | Management Engine Hardware Abstraction Layer |
Sensors Rand Band I
ThreadX Kernel |
6
— MAC Sﬁ%ﬁt 802.11
‘\
\‘ SPI
. {sharable)
. Flash
s s RAN ME »| (16Mbit32Mbit)
i (IDE-R, SOL, (Out-of-Band IF Petipharils:
% HECI) and Circuit cwﬁzw. |
\‘ PCI entities. .. Breaker Filters) SMBuS
\‘ To sensors
' {
*
\ PHY

Credit: Intel 2009

ME: High-level overview

Communicating with the Host OS and network

Metwork
Host O5 ME Server
|nn§&:‘m |ma¢kf;TT ApRn “mlr'i n !::J ﬁ;{:ﬂ: Im;iww?rﬂ
Apphcation Application P Application
SOMP SOAP
5‘13_'-{'};' HTTP HTTP
H s s
LS TCRIE TCP/P
| TCRIP | — MEI I
Drriver Dirivis
| |
HEC| InMeeface
L&MN
Diriver LI LAN Hardware Il Link LAMN Hardware

e HECI: Host Embedded Controller Interface;
communication using a PClI memory-mapped area

® Network protocol is SOAP based; can be plain HTTP or

HTTPS

ME: High-level overview

Some of the ME components

® Active Management Technology (AMT): remote
configuration, administration, provisioning, repair, KVM

o System Defense: lowest-level firewall/packet filter with
customizable rules

® |DE Redirection (IDE-R) and Serial-Over-LAN (SOL): boot
from a remote CD/HDD image to fix non-bootable or
iInfected OS, and control the PC console

® |dentity Protection: embedded one-time password (OTP)
token for two-factor authentication

® Protected Transaction Display: secure PIN entry on a
remote server not visible to the host software

ME: High-level overview

Intel Anti-Theft

® PC can be locked or disabled if it fails to check-in with the
remote server at some predefined interval; if the server
signals that the PC is marked as stolen; or on delivery of a
"poison pill"

Poison pill can be sent as an SMS if a 3G connection is
available

Can notify disk encryption software to erase HDD
encryption keys

Reactivation is possible using previously set up recovery
password or by using one-time password

ME: Low-level details

ME: Low-level details

Sources of information

® |ntel's whitepapers and other publications (e.g. patents)
® Intel's official drivers and software
» HECI driver, management services, status checkers
> AMT SDK, code samples
> Linux drivers and supporting software; coreboot
® BIOS updates for boards on Intel chipsets

> Even though ME firmware is usually not updateable
using normal means, it's usually still included in the
BIOS image

> Sometimes separate ME firmware updates are
available too

ME: Low-level details

Sources of information
¢ Intel's ME Firmware kits are not supposed to be distributed

to end users

® However, many vendors still put up the whole package

roF] Intel® Management Engine System Tools User Guide

ftp:/fme kristal o/ fSystem%%20Tools%20User%20Guide pdf

File Format: PDF/Adobe Acrobat - Quick View

System Tools User Guide for. Intel® Management Flash Image Tool (FITC) _....
.. 16. 3.1. System Reguirements .

Index of /Driver/Acer Aspire 4738/AutoRun/DRV/ntel Turbo Boost ...
110.138.195.161/0river/___/AutoRun/.. /Flash%20lmage%20Tool/

5Jan 2012 — ... Aspire 4738/AutoRun/DRV/Intel Turbo Boost Manageability Engine
Code/ MOD0O1D004C0O00MO00L Tools/ System Tools/Flash Image Tool/ ...

Gateway 7X4850 Intel IAMT [Opaiieep v.7.0.0.1144 ana Windows 7 ...
driver.ru/?aid=1026521210333254de 1030799365

v VAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash Image Toolfitc exe 157
2010-12-20 1746 IAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash ...

ACER Veriton M290 Intel iIAMT [paiisep v.7.0.0.1144 anA Windows 7
driver.ru/?aid=102438162288%5 cecd2ebB6acicad

... Tools/Flash Image Tool/fitc_exe 157 2011-02-22 11:42 IAMT _Intel 7.0.0.

1144 WTx86x64/Tools/System Tools/Flash Image Tool/fitc.ini 1481 2011-02-22 11:42

instead of just the drivers,
or forget to disable the
FTP listing

With a few picked keywords
you can find the good stuff :)

10

ME: Low-level details

® The SPI flash is shared between BIOS,
ME and GbE

® For security, BIOS (and OS) should not
have access to ME region

® The chipset enforces it using
information in the Descriptor region

® The Descriptor region must be at the
lowest address of the flash and contain
addresses and sizes of other regions,
as well as their mutual access
permissions.

BIOS
Region 1

Intel® ME

Region 2

GbE
Region 3

Flash Descriptor
Region 0

11

ME: Low-level details

® ME region itself is not monolithic

® |t consists of several partitions, and the table at the start®
describes them

Partition table header

10 UMASIze Flags

Partition table entry

10 StartTokens MaxTokens ScratchSectors Flags

*Starting from ME 3.x the table begins at offset 0x10 (table version 2.0)

12

ME: Low-level details

===ME Flash Partition Table===
NumEntries: 10

Version: 2.0

EntryType: 10

HeaderLen: 30

Checksum: oF
FlashCyclelLifetime: 7

FlashCyclelLimit: 100
UMASize: 16
Flags: FFFFFEO7

EFFS present: 1
ME Layout Type: 3

Partition type (Flags&0x7F):

Partition: "FOVD'
Owner: "KRID'
Offset/size: 00000400/00001C00
TokensOnStart: 00000001
MaxTokens: 00000001
ScratchSectors: 00000000
Flags: 0783
Type: 3 (Generic)
DirectAccess: 1
Read: 1
Write: 1
Execute: 1
Logical: 0
WOPDisable: %)
ExclBlockUse: ©

13

ME: Low-level details

® Code partitions have a header called "manifest"

® |t contains versioning info, number of code modules, but
also an RSA signature of the whole partition

® Format of the header is very close to TXT AC modules

Vendor Date Size

<==Reserved KeySize Reserved

RsaPubExp RsaSig==>

14

ME: Low-level details

An example code partition header

Module Type: 4, Subtype: ©

Header Length:
Header Version:
Flags:

Module Vendor:

Date:

Total Manifest Size:
Tag:

Number of modules:
Version:

Unknown data 1:

OxAl (0x284 bytes)

1.0

0x00000000 [production signed] [production flag]
Ox8086

20120705

OxFD (©x3F4 bytes)

$MN2

2

8.1.0.1265

[oL, 1L, 2L, oL, oL, oL, oL, oL, oL, oL, oL, oL,

oL, oL, oL, oL, oL, oL, oL]

Key size:

Scratch size:

RSA Public Key:

RSA Public Exponent:
RSA Signature:
Partition name:
Unknown data 2:

Ox40 (0x100 bytes)
0x01 (©x4 bytes)

[skipped]

17

[skipped]

MDMV

[OL, OL]

15

ME: Low-level details

® The format of module headers depends on the version
(header tag $MAN or $MN2)

® Module headers include module name, hash, sizes
(compressed and uncompressed), flags and runtime info
(load address, entrypoints)

® Modules can be stored uncompressed, or compressed
with LZMA or Huffman

Header tag: $MME

Module name: JOM

Hash: AC A3 [...] C1 6C

Offset: OX00015F7A

Data length: OXx00019F6D

LoadBase: ©x200B1000

Flags: Ox0012D42A
Power Type: POWER_TYPE_M@ ONLY (1)
Compression: COMP_TYPE_LZMA (2)
API Type: API_TYPE_KERNEL (2)

16

ME: Low-level details

® There have been two generations of the processor core,
and corresponding changes in firmware layout

Core ARCTangent-A4 ARCTangent-A5(?)
Manifest tag $MAN $MN2

17

ME: Low-level details

The OS running on the chip is ThreadX RTOS from
Express Logic

OS provides APIs for managing threads (tasks),
semaphores, message queues, event flags, timers,
memory allocations etc.

The ME firmware wraps those APIs in a module called
KERNEL, and uses it from other modules (via tables of
pointers).

Express Logic provides a demo version (binary only) of
ThreadX for ARC, which helps in identifying APls in ME

Unfortunately Gen2 uses the Huffman compression
(which | have not figured out yet) for the KERNEL :(

So the going is somewhat slow for the newer firmwares

18

ME: communications

If AMT option is enabled, ME listens for packets on several ports
(e.g. 16992 for HTTP and 16993 for HTTPS) for HTTP requests from
browsers (for Web Ul) or SOAP requests.

Since it has a separate IP and MAC for the OOB interface, this does
not interfere with the host

ME is also exposed by the chipset as a PCI device to the CPU, and
can exchange messages with it using Host Embedded Controller
Interface (HECI) protocol over a memory-mapped 10 area (MMIQO)

The protocol itself is described in public documentation [DCMI-HI],
but the higher-level messages are not well documented

ME can expose various clients to the host, each identified by a
unique UUID or a numeric ID, and host can talk to each client
independently

Several core clients have fixed low IDs, the rest gets dynamic

... 2000

numbers

19

ME: communications

® An example of enumerating clients (FreeBSD):

heci®:

<Intel 82G33/G31/P35/P31 Express HECI/MEI Controller> mem

0xd0526100-0xd052610f irgq 16 at device 3.0 on pci@

hecio:
heci®:
hecio:
hecio:
hecio:
heci®:
hecio:
heci®:
hecio:
hecio:
heci®:
hecio:
heci®:
hecio:

[...]

heci®:
heci®Q:
heci®:

using MSI

[ITHREAD]
found ME client at address 0x02:

status = 0x00

protocol name(guid) = BB875E12-CB58-4D14-AE93-8566183C66C7
found ME client at address 0x03:

status = 0x00

protocol name(guid) = A12FF5CA-FACB-4CB4-A958-19A23B2E6881
found ME client at address 0x06:

status = 0x00

protocol name(guid) = 9B27FD6D-EF72-4967-BCC2-471A32679620
found ME client at address 0x07:

status = 0x00

protocol name(guid) = 55213584-9A29-4916-BADF-OFB7ED682AEB

found ME client at address 0x27:
status = Ox00
protocol name(guid) = O5B79A6F-4628-4D7F-899D-A91514CB32AB

20

ME: communications

® A list of some of the known clients, gathered from headers and
other sources

42b3ce2f-bd9f-485a-96ae-26406230b1ff

309dcde8-ccb1-4062-8f78-600115a34327 Firmware Update

6733a4db-0476-4e7b-b3af-bcfc29bee7a7 LME

3d98d9b7-1ce8-4252-b337-2eff106ef29f LMS

0f908627d-13bf-4a04-0b91f-0a64e€9245323d CLS

21

ME: communications

One of the main users of the HECI interface is the BIOS

It has to allocate the UMA memory for ME, protect it, and notify
ME about it

It also needs to tell ME about various events, including End-Of-
POST (EOP)

If not disabled at manufacturing time, BIOS can also ask ME to
temporarily open its flash region for reading and writing; this
functionality is intended to allow ME region updates, and is
called Host ME Region Flash Protection Override (HMRFPOQO)

An optional module inside BIOS, MEBx (ME BIOS Extension)
provides a Ul for the user to configure various ME options. It
also uses HECI to communicate with ME

Thus, reverse-engineering BIOS is a good source for info about
ME communications

22

ME: Security

23

ME: Security

® ME includes numerous security features

® Code signing: all code that is supposed to be running on the
ME is signed with RSA and is checked by the boot ROM

“During the design phase, a Firmware Signing Key (FWSK) public/private pair is
generated at a secure Intel Location, using the Intel Code Signing System. The
Private FWSK is stored securely and confidentially by Intel. Intel AMT ROM
includes a SHA-1 Hash of the public key, based on RSA, 2048 bit modulus
fixed. Each approved production firmware image is digitally signed by Intel with
the private FWSK. The public FWSK and the digital signature are appended to
the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM
verifying that the public FWSK on Flash is valid, based on the hash value in
ROM. The ROM validates the firmware image that corresponds to the manifest’s
digital signature through the use of the public FWSK, and if successful, the

system continues to boot from Flash code.”

From "Architecture Guide: Intel® Active Management Technology", 2009

ME: Security

® ME requires some RAM to put unpacked code and
runtime variables (MCU's own memory is too limited and
slow)

® This memory is reserved by BIOS on ME's request and
cannot be accessed by the host CPU once locked.

1812 RV Keserveaq,
11 RWO 0 Enable for Intel® ME memory region
Lock for Intel ME memory region base/mask. This bit is anly
10 RWO 0 cleared upon a reset. MESEGMASK and MESEGBASE cannot be
changed once this bit is set.
9:0 RV 0 Reserved

® A memory remapping attack was demonstrated by
Invisible Things Lab in 2009, but it doesn't work anymore

® Cold boot attack is probably still possible, though...
® An open question: how does it work with the integrated

memory controller on the newer chips?

~ (¢) 2012 Igor S
E/

25

ME: Security

® Flash access is limited by the chipset according to the
flags in the descriptor region (start of the flash chip), and
normally ME region is not accessible to others

® Since the descriptor region itself is marked read-only at
end of manufacturing, changing permissions is not trivial

® One obvious solution is to use a hardware flash
programmer to write to the chip directly, bypassing CPU
and chipset. This might require unsoldering the chip,
however

® Another option is the HMRFPO message which asks ME

to unlock the flash temporarily, but it's tricky to use
because it only works before End-Of-POST

26

Getting along with the BIOS

» | decided to find a place where the BIOS sends End-Of-
Post to the ME

» Extracted BIOS with 7-zip (UEFI Firmware Filesystem)
» Searched for "Post", both ANSI and Unicode
» A strange file appears...

E_ﬁ| view 1.97E405ED - Far - -

n N/A ME

Subsyst

em ME Su

e MEBx E

xecute M

(c) 2012 Igor

Getting along with the BIOS

t

"he file contains bunch of Unicode strings, first in English
nen in couple of other languages

® The strings refer to the BIOS setup items
® File appears next to a .efi executable, meaning they were

two sections of the flash file "Setup”.

® So obviously this is a kind of a resource file for the BIOS
setup Ul

® Turns out that (U)EFI provides a standard way to encode
strings and forms for Ul, called HIl (Human Interface

nfrastructure)

® And someone already wrote tools[1] to parse them...

[1] http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930¢g/

28

http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/

Getting along with the BIOS

® After some hacking of the scripts (apparently there were
some updates in the format) dumped a list of strings and
forms

® And here's the option we need.:

Suppress If

EQ [Oxdb<1>] == 0x0

One Of [©xdc<1>] u'End of Post Message'
\Help text: u'End of Post Message Help'
Option 'Disabled' = 0x0 Flags 0x10 Key 0x©
Option 'Enabled' = ©x1 Flags 0x13 Key 0x0
End One Of

End If

® However, it doesn't seem to be present in the actual UI?

29

Getting along with the BIOS

® This setting is a part of a form named 'ME Subsystem'’

® Scrolling a bit around, we find:

Suppress If
LIST [@xdb<1>] in (©x0,0x1)

Reference: 'ME Subsystem' Form ID ©xla Flags 0x0 Key ©0x0
\Help text: u'ME Subsystem Parameters'’

End If

® So, the form is not shown if the byte in the Setup variable
at offset OxDB is either 0 or 1.

® One solution is to patch the form bytecode, pack the file
back into the BIOS (updating the checksums) and flash
the new BIOS

® But this is rather involved and risky. Is there an easier
way?

Getting along with the BIOS

® Examining and editing UEFI variables is rather awkward
but doable with the EFI shell and command "dmpstore"

© 1 2 3 4 5 6 7 8 9 A B C D E F
00000Od0 00 00 00 00 00 00 01 V0 00 00 00 01 01 00 00 01

® Changing EFI vars is much easier than patching actual
files in the FFS. Also, no need to reflash.

® Since neither 0 nor 1 will show the form, let's put
something else in there... for example, OxFF

> dmpstore Setup -s temp.bin
> hexedit temp.bin

> dmpstore Setup -1 temp.bin
> exit

e Did it work?

31

Getting along with the BIOS

Ceo

Advanced

ME Subsystem >
CPU Configuration

system Agent Confilguration

FCH Configuration

SATA Configuration ME Subsustem
> USB Configuration ME Tempaorary Disable
STME Subsystem ME Temporary Disable
> Chipset Reference Board End of Post Message

> Onboard Devices Configuration Execute MEB:x

> APH
> Integrated Clock Chip Configuration

Getting along with the BIOS

® Now we can change the ME options and disable End-Of-
POST

® One minor issue: when you return from the "ME
Subsystem” form, the menu item disappears :)

® This happens because the byte OxDB gets setto 1 (or O, if
you disable ME) again, triggering the "Suppress If"
opcode

® So if you need to go there once more, you need to do the
dmpstore/hexedit trick again

e By the way, instead of going through the menus we could
directly set the necessary value in the Setup variable (byte
at offset OxDC)

E
-

Getting along with the BIOS

» Rebooting after changing "End of Post Message" to

"Disabled":

lGet flash master region access status...

Host Read Access to ME:
Host Write Access to ME:

SPI Flash
SPI Flash
SPI Flash
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
BIOS boot
QOEM Id:

ID #1
ID US
BIOS

Range
Range
Range
Range
Range
Range
Range
Range
Range
Range

CC #1:

Uscc:

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

State:

Base HO 0x0
Limit H#O 0x0

Base H1 Ox0
Limit #1 0x0
Base H2 Ox0
Limit H2 0Ox0
Base H3 0Ox0
Limit H3 0x0
Base HY Ox0
Limit H4 0Ox0

done
Disabled
Disabled
EF4016
20052001
20052005

Pre Boot
PEOOOEER-0000-0AR0-PRRR-00RRRARRRRAR

(c) 2012 Igor

-

34

Getting along with the BIOS

® Okay, we have our ME in desired state, what now?

® The specifics of the HMRFPO message are not available
In public documentation

® However, some BIOS updates exist that allow updating
ME version from 7.0 to 8.0

® ME cannot update itself to the next major version, so this
must be done by external (to the ME) code

® From reading the "Bios ME7 to MES8 update SOP" for MSI
boards it's clear that the ME update happens on the first
boot of the new BIOS

® So the code must be there somewhere...

E
-

Getting along with the BIOS

Several days of reversing later...

® Found the new ME partition (stored as a file in the UEFI

volume)

Found the code that does the ME update ("Updating BIOS
ME, please wait")

Found code which seems to talk to ME and send
commands not mentioned in documentation

Found code in ME which handles these messages
(probably)

Converted an AMT SDK sample to send similar
commands

Unfortunately, didn't work on my test hardware (ASUS)
However, it was a good learning experience!

36

A different approach

o After | went through this, | accidentally found a mention that

the newest BIOS for my board contains ME 8.0 (this fact was
not mentioned in Asus' release notes)

® As a nice side effect, this update completely opens the ME
region!

® So now | can read and write the ME region freely (using
Intel's FPT)

® | can also analyze the update process in more detail and

figure out how it works around the ME lock on the old
version

37

Poking the flash

One of the partitions in the ME region is "EFFS"

It contains in turn other, virtual partitions with tags beginning
with "NV" (non-volatile variables) and "BI" (block 1/O), used
by the software components of ME

Some of these variables are used to enable and disable
various ME features which usually depend on the specific
chipset model (a single ME binary is used on many
configurations)

For example, ME on my board includes modules TDT (Anti-
Theft) and PAVP (Protected Audio/Video Path), but they're
disabled in software

| tried changing some obvious bits, but it seems it's not that
simple...

38

Results

® | have not managed to run my own rootkit on the ME (yet)

- ® However, I've learned a lot about it and | hope to achieve it
| in future

® |ntel seems to have done a good job on security so far, but
there's a /ot of code in there (now up to SMB, compressed)

® | made some tools that should help others in research:
> ME ROM dumper/extractor
> ARC processor module for IDA

39

ME dumper/extractor

® Written in Python

| ® Supports parsing of the following formats:
o Full SPI flash image (signature 5A A5 FO OF)
> Separate ME region (signature $FPT)
o Individual ME code module ($MN2 or $MAN)
® Prints detailed header info

® prepares LZMA-compressed modules for easy unpacking with

[-ZIp

40

ME dumper/extractor

Header tag: $MME
Module name: JOM
Hash: FB 49 10 CB 04 C8 62 9D BE 53 BB 7A CF 0C
6A D4 1F F9 92 A7 AD 52 2A 55 FE F6 71 74 06 FO 0C 64
Unk34: 0x20157000
Offset: Ox0001198E
Unk38: 0x00029000
Data length: Ox000133CA
Unk44: 0x00029518
Unk48: 0x00029518
LoadBase: ©x20159000
Flags: 0x0012D42A

Unknown BO: %)

Power Type: POWER_TYPE_M@ ONLY (1)

Unknown B3: 1

Compression: COMP_TYPE_LZMA (2)

Stage: STAGE 8 (8)

API Type: API_TYPE_KERNEL (2)
Unknown B14: 1
Unknown B15: 1
Privileged: %)
Unknown B17_19: 1
Unknown B20 21: 1

41

ARC processor: objdump

BN cmd fk

208fda2a:
200f4a2c:

208fdale:
208+4a30:
208+4a32:
208+4a36:

208F4a38:
208f4a3a:
208f4a3e:
208+4a48 :
208Fdadd :

208+4248:
208fdada:
208ftdade:
208+4a58:
208+4a52:
208+4a56:
208+4a58:
208f4a5a:
208+f4a5e:
208+4ab62 :

-alf32-objdump_arcompact.exe” -b binary -EL -m AR.., 2= (o X

0PPBe782 cmp_ r15,2 -
008494 Bx200f4b54

00008501 B ré,[r13,4]
BeEeedsl cmp_s re,l
28cc8l22 cmp.nz re,4
Beeafibs bne s @x288f4b9%e

BeeBds55e 1d_s ri3,pcl,B8x178
26561501 add3 rl,rld,28
BeRRdaBl mov_s r2,1

25561dcl add3 ré,rl3,55
Ba32fedf bl Bx20811474

BeRR7Ba9 mov_s re,rl3
28588586 add ré.rd. 8x194
BBBRdT75a 1d_s rl5,pcl,@x168
BeEa71cs mov_s rl,rld
21388b42 add rl,rl,173
BeRRdaB2 mow r2,2

gegedcod mow rl2,lee
27821383 sub r3,rl5,rl2
244506088 mow rd, 24
BBaefedf bl Bx288f138c

s
5

What are the results of underlined instructions?

(c) 2012 Igor

42

ARC processor: IDA

o
ROM: 28@F4A2A ©38 cmp rl5%, 2
ROM: 280F4A2C &38 bnz loc 280F4B54
ROM: 200F4A2E 038 1d re, [r13,4]
ROM: 280F4A30 038 cmp ra, 1
ROM: 280F4A432 @38 cmp.nz r@, 4
ROM: 280F4A36 238 bnz loc 208F4BSE
ROM: 280F4438 @38 1d r13, =dword 2008FF44C
ROM: 208F4A3A B38 add rl, rl14, (aHcisemaphore - @x28@F8CAC) # "HciSemaphore"
ROM: 28@F4A3E ©38 mov r2, 1
ROM: 2680F4040 @38 add r8, rl3, (g_HciSemaphore - ©x288FF44C)
ROM: 208F4A44 B38 bl create semaphore
ROM: 280F4A48 038 mov re, ril3
ROM: 208F4A4A B38 add re, r@, (g_HcilnputQueue - Ox20BFF44C)
ROM: 28@F4AAE ©38 1d rl5, =0x200FFc48
ROM: 280F4A58 &38 mov rl, rld
ROM: 208F4A52 038 add rl, rl, (aHciinputqueue - @x200F8CAC) # "HcilnputQueues"
ROM: 28@F4A56 038 mov r2, 2
ROM: 280F4A58 @38 mov r12, (Ox200FF648 - unk_ 2080FF5E4)
ROM: 280F4A5A B38 sub r3, rl5, rl2 ; unk 288FF5E4
ROM: 280F4A5E @38 mov rd, @x18
ROM: 208F4A62 B38 bl create_queue
ROM: 208F4A66 O3B add r8, rl3, (g HciHeciEventFlags - ©x288FF44C)
ROM: 280F4A6A ©38 mov rl, rld
ROM: 208F4A6C 838 add rl, rl, (aHcihecieventflags - ©@x200F8CAC) # "HciHeciEventFlags"
ROM: 208F4A76 B838 bl create _event flags
ROM:280F4A74 @38 add r@, rl3, (g HciBufferQueue - @x200FF44C)
ROM: 280F4A78 B38 mow rl, rld
ROM: 208F4A7A 838 add rl, rl, (aHcibufferqueue - 8x208F8C4C) # "HciBufferQueue"
ROM: 280F4ATE B38 mov rz, 1 # message_size

43

ARC processor: objdump

28813898
28813892
28813894 :
28813896
2883898
288+389a:
288+389¢c:
288+38%e:
288+38a8:
288+38a2:
288+38a4:

208+30a8:
208+30ac:
208f30ae:
208+30b8 :
208+38b2 :

288+38bb:
288+38ba:
288+38be:
288+38c8:
288+38c2:

BeoabaET
Boeeased
BeBAceBb
Bee0a5s0a6
Beeaceba
Boeasa2
Beeaceal
Beeeasas5
gaee7ae9
BeeBdcBac
B585fect

18942818
Baeacsel
BBBB=885
B888dbbe
Be38888d

Be
B3

2b 2d 2

B8887d88
2bB32+2d

Wi = | = | =l T

T

Foo At oA+ o AN

=T -]
=

m

L Ty I ¥ B ¥ I VI ¥ I]

=

=+

[T]

LA

re,rd,15
ré,[rl3,16]

Bx288f8das

rl6,[rl6,148]
rl3

re,5

r3,0
Bx20613130

r13,pcl,14
ré,[rll,rd]
rl3,rl3,r@

[r13]
rd5,rl9,1p count

@ [main] arc-elf32-objdump arcompact 5920 exception::handle: Exception: 5
ATUS_ACCESS_VIOLATION
495 [main] arc-elf32-objdump_arcompact 5928 open_stackdumpfile: Dumping stac
k trace to arc-elf32-objdump_arcompact.exe.stackdump

Program received signal SIGSEGV, Segmentation fault.
@x61112b58 in strcpy () from Jusr/bin/cygwinl.dll

(c) 2012 Igor

(gdb)

ARC processor: IDA

DA View-a [Eiadmfﬁmu_veriﬁf_oen'idl:l | [2] Hex view-a B | Structures [| | Enums [| Imports [] | @ Expn

ROM: 260F 3848 loc_268F38A8: # CODE XREF: fwu_get_vev5i0n+2CTj
ROM: 288F3640 # qu_get_vehsion+447j
“ ROM:200F3040 B34 mow rd, ril5
“ ROM:200F38A2 834 add sp, sp, 9x3@
= |ROM: 2@8F30A4 0G4 b unk_200F8DAS
ROM: 268F38A4 # End of function fwu_get wversion
ROM: 286F 3844
ROM: 288F 3844 e
® IROM: 200F36A8 .long dword_20181894
ROM: 288F38AC
ROM: 288F38AC # =============== S UBROUTTINE =======================================

ROM: 280F30AC
ROM: 288F38AC

ROM: 288F30AC sub_288F30AC: # CODE XREF: fwu_get_VEPsiDn+BCTp
“ ROM: 2PBF3BAC 288 push rl13
“ ROM:200F38AE 204 cmp rd, S5
“ ROM:208F30B8 204 mov r3, @
“ ROM: 208F36B2 B84 bhi loc_200F3136
“ ROM:20@F30B6 B84 add rl3, pcl, (byte 20@F30C2 - ©x200F30B4)
“ ROM: 200F30BA 804 ldb.x r@, [r13,r8]
* |ROM: 200F30BE 004 add1 r13, r13, |re
" ROM:208F30Ce 204] [Fr13] # switch & cases
ROM:200F38C8 I et ettt
* ROM:208F30C2 004 byte 200F30C2: .byte 3, 0x2B, 0x2D, Ox2F, ©x31, ©x35
ROM:208F38C2 # DATA XREF: 5ub_289F38AC+ATO
ROM: 280F30C2 # jump table for switch statement
ROM: 288F38C8 e
ROM:208F38C8
ROM:288F38C8 loc_268F38C8: # CODE XREF: 5ub_29@F3BhC+14Tj
“ ROM:200F38C8 Bo4 cmp rl, @x15 # jumptable 206F38CE case 8
" ROM:208F38CA 204 bhi loc_2808F3114 # jumptable 280F38D8 cases 2,6-18,14-208
“ IROM: 208F36CE @84 add ré, pcl, (byte_ 2808F38DA - @x208F38CC)
-

ROM: 200F30D2 004 ldb.x ri1, [r@,rl]

ARC processor module for IDA

® Supports ARCTangent-A4 (older, 32-bit only instructions)
and ARCompact (newer, mixed 32/16-bit ISA)

Tracks changes to SP register and creates local variables
Handles switch tables

Tracks register values to find more cross-references
Inlines constant pool loads (PC-relative) for convenience
In general, makes life not constant pain

Not production quality yet, but hopefully will appear in the
next version of IDA

Future work

® Dynamic Application Loader

> New feature in 7.1/8.0 firmware: load Java applets and
run them inside ME

> Used for things like PIN entry Ul and remote
authentication

> The applets provided by Intel are signed, but it's one more
vector of entry...

® EFFS parsing and modifying
> Most of the ME state is stored there
> If we can modify flash, we can modify EFFS
> Critical variables are protected from tampering but the
majority isn't
» Complicated format because of flash wear leveling

47

Future work

® Huffman compression

» Used in newer firmwares for compressing the kernel and
some other modules

> Couldn't find decompression code; some whitepapers
mention hardware decompression...

> Still, Huffman is a pretty simple protocol, so should be
doable from just the compressed data

® ME < Host protocols
> Most modules use different message format

> A lot of undocumented messages; some modules seem to
be not mentioned anywhere

» Some client software has very verbose debugging
messages in their binaries...

48

Future work

® BIOS RE

> In early boot stages ME accepts some things which are
not possible later

> Reversing BIOS modules that talk to ME is a good source
of info

> Even better would be to run custom code early
> Big room for improvement in tools

® Simulation and fuzzing

> Open Virtual Platform (www.ovpworld.org) has modules
for ARC600 and ARC700 (ARCompact-based)

> They claim that it's easy to extend the models with
emulation for custom hardware

> The simulator has GDB stub for debugging

> Debugging and fuzzing should be possible

49

http://www.ovpworld.org/

References and links

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT _Implementation_and_Reference Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
http://download.intel.com/technology/itj/2008/v12i4/paper[1-10].pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.thefengs.com/wuchang/work/courses/cs592/cs592 spring2007/
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.qgit;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf

50

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
http://download.intel.com/technology/itj/2008/v12i4/paper%5B1-10%5D.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.thefengs.com/wuchang/work/courses/cs592/cs592_spring2007/
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf

Thank you!

Questions?

igor@hex-rays.com
skochinsky@gmail.com

51

mailto:igor@hex-rays.com
mailto:skochinsky@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

